
Chapter 18

INSTABILITY OF

ISOCHRONOUS RINGS

In a storage ring, sometimes there are advantages to work with a lattice having a

smaller slippage factor �. One reason is the achievement of shorter bunch lengths. It

can be shown easily that, in electron rings where the energy spread is determined by

synchrotron radiation, the bunch length is proportional to j�j1=2. For proton or muon

storage rings where there is no synchrotron radiation, the bunch length at �xed rf voltage

is proportional to j�j1=4. Another reason for having a small slip factor is the possible

reduction of the expensive rf system. To maintain a bunch at the required rms length

�� and momentum spread �Æ, the synchrotron tune is

�s =
j�j�Æ
!0��

; (18.1)

and the rf voltage is therefore

Vrf =
2�j�j�2E0�

2
Æ

eh!2
0�

2
� j cos�sj

(18.2)

which decreases linearly as j�j. In above, h is the rf harmonic, �s is the synchronous phase

angle, E0 is the total energy of the synchronous particle which has angular revolution

frequency !0 and velocity �c where c is the velocity of light. Ideally, when � = 0, no

rf will be necessary, because there will not be any drift in phase. A ring with � = 0,

i.e., operating right at transition energy, is called an isochronous ring. However, there

is always a spread in energy in the beam particles. As a result, it is not possible
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18-2 18. INSTABILITY OF ISOCHRONOUS RINGS

for every beam particle to see isochronicity. In addition, the slippage factor � is a

nonlinear function of the momentum spread. Usually, isochronicity is de�ned when the

slippage factor vanishes in the �rst order of the momentum spread. The higher-order

contributions will provide a �nite slippage. Thus, the ring is actually quasi-isochronous.

For such a ring, the parameters of interest are (1) � for the synchronous particle and (2)

the total spread in � seen by all the beam particles. It is necessary to design the lattice

so that both � and the spread in � are small. When � is vanishing small, there will not

be any Landau damping and collective instabilities will emerge as an important issue,

which we are going to investigate in this chapter.

18.1 Higher-Order Momentum Compaction

Transition crossing is de�ned as the moment when the relativistic gamma of the particle

is equal to 
t of the accelerator ring. Let us recall that the transition gamma is de�ned

as 
t = �
�1=2
0 , where �0 is the momentum-compaction factor which is the fractional

increment of the circumferential orbit length of a particle with fractional momentum

o�set Æ. Hence, if C(Æ) is the length of the o� momentum orbit,

C(Æ) = C0(1 + �0Æ) ; (18.3)

with C0 = C(0) being the length of the on-momentum orbit. Thus, the slippage factor �

is exactly zero at transition. However, Eq. (18.3) only gives the linear dependence of the

orbit length on momentum o�set. In general, this is never the case for any accelerator

lattice. Therefore, Eq. (18.3) should be extended to�

C(Æ) = C0

�
1 + �0Æ(1 + �1Æ + �2Æ

2 + � � � )� ; (18.4)

where �1, �2, etc. are called the high-order components of the momentum-compaction

factor. Now the slippage factor � also becomes momentum spread dependent. Its higher

orders must be carefully de�ned so that it enters correctly into Eq. (16.3), the phase-slip

equation of motion
d��

dt
= h!0�Æ : (18.5)

Here, we follow a derivation of Edwards and Syphers [1]. A particle with momentum

o�set Æn sees an accumulated rf phase �n on its nth passage of the rf cavity, which is

�In Europe, �0, �1, �2, etc. are usually referred to as �1, �2, �3, etc. There is also another common

de�nition, where C(Æ) = C0

�
1 + �0Æ + �1Æ

2 + �2Æ
3 + � � �

�
.
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considered to have an in�nitesimal length. On its (n+1)th passage, at a time Tn+1+�Tn+1
later, the accumulated rf phase seen becomes

�n+1 = �n + !rf(Tn+1 +�Tn+1) ; (18.6)

where !rf=2� is the rf frequency, Tn+1 is the revolution period of the synchronous particle

during its (n+1)th turn and �Tn+1 is the extra time taken by the o�-momentum particle

to complete the revolution. On the other hand, the rf phase seen by the synchronous

particle accumulates according to

�sn = !rftn ; (18.7)

where tn is the total accumulated time up to the nth passage of the cavity. Naturally,

we like to measure the rf phase seen by the o�-momentum particle relative to the syn-

chronous particle. This leads to the introduction of the rf phase o�set or rf phase slip

��n de�ned by

��n = �n � �sn = �n � !rftn : (18.8)

Substituting into Eq. (18.6) and noting that Tn+1 = tn+1 � tn, we arrive at

��n+1 = ��n + !rf�Tn+1 : (18.9)

In order for the synchronous particle to be synchronized, one must adjust the rf frequency

so that !rfTn+1 = 2�h for all turns, where h is the rf harmonic number. Now, we can

de�ne the slippage factor as the slip in revolution period at the (n+1)th passage of the

cavity by
�Tn+1
Tn+1

= �n+1Æn+1 : (18.10)

Here, the subscript of � implies its dependence on the momentum o�set of the particle

at the (n+1)th passage and not its higher-order expansion terms. With this de�nition,

Eq. (18.9) becomes
��n+1 ���n

Tn+1
= �n+1!rfÆn+1 : (18.11)

When smoothing is applied, we obtain the phase-slip equation of Eq. (16.10),

d��

dt
= h!0�Æ : (18.12)

Since the revolution period T can be expressed as

T =
C

�c
; (18.13)
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we can easily expand T as a Taylor series in Æ, from which each higher-order of the

slippage factor can be identi�ed. For example, we have

T 0
0

T0
=
C 0
0

C0
� � 00
�0

;

T 00
0

T0
=

2C 0
0
2

C2
0

� 2� 00C
0
0

�0C0
� � 000
�0

+
2� 00

2

�20
;

T 000
0

T0
=
C 000
0

C0

� 3� 00C
00
0

�0C0

� 3� 000C
0
0

�0C0

+
6� 00

2C 0
0

�20C0

� � 0000
�0
� � 00�

00
0

�20
� 6� 00

3

�30
; (18.14)

where the prime denotes di�erentiation with respect to Æ and all variables are evaluated

at the synchronous particle, which explains why all the variables above carry the sub-

scriptions zero, although these subscripts may have been suppressed in many occasions

for the sake of convenience. The derivatives of C can be read o� easily from Eq. (18.4).

The derivatives of � can be computed straightforwardly. They are:

� 00
�0

=
1


20
;

� 000
�0

= �3�20

20

;

� 0000
�0

= �3�20(1� 5�20)


20
: (18.15)

With the expansion of the slippage factor

� = �0 + �1Æ + �2Æ
2 + � � � ; (18.16)

we obtain the expressions for the higher-order components of the slippage factor [Exer-

cise 18.1]:

�0 = �0 � 1


20
; (18.17)

�1 = �0�1 +
3�20
2
20

� �0

20

; (18.18)

�2 = �0�2 +
�0�1


20
� 2�40


20
+
3�0�

2
0

2
20
+
�0

40

: (18.19)
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Looking at the phase-slip equation above, one may be tempted to equate d��=dt to

��!=h, where �! is the slip in angular velocity of the o�-momentum particle relative

to the synchronous particle. However, this will translate the de�nition of � to

�!

!0
= ��Æ ; (18.20)

which is di�erent from Eq. (18.10) and therefore will lead to incorrect expressions for the

higher-order terms of �. This misconception comes about in the smoothing procedure

from Eq. (18.11) to Eq. (18.12), where we divide throughout by the revolution period

of the synchronous particle. If �! of the o�-momentum particle is desired, one should

divide instead by Tn+1+�Tn+1, the revolution period of the o�-momentum particle. In

other words, d��=dt in the phase equation describing the motion of an o�-momentum

particle does not imply the rate of change of rf phase slip of the o�-momentum particle

according to the clock that registers the revolution period of that particle. Instead, it is

referenced to the clock that registers the revolution period of the synchronous particle.

Because of this easily-forgotten detail, it will be more convenient to use s = v0t as the

independent `time' variable, where s is the distance measured along the closed orbit of

the synchronous particle and v0 is the velocity of the synchronous particle.

Another de�nition in the literature is [2]

� = � 1

!0

d!

dÆ
; (18.21)

which is incompatible with the phase-slip equation in Eq. (18.12). This de�nition

originates from the lowest order expansion in ! [2], and is therefore insuÆcient when

higher-orders in � are studied. This is, in fact, a variation of the incorrect de�nition of

Eq. (18.20).

18.2 �1-Dominated Bucket

To save the cost of rf power, suggestions have been made to make storage rings isochronous

or quasi-isochronous, implying an operation when �0 � 0. Since the drift of the longi-

tudinal phase is small, a small rf system will be adequate. However, when �0 is small

enough, we need to include the next lowest nonlinear term of the slippage factor, namely

�1. When the rf phase slip �� and the fractional momentum spread Æ are used as canon-

ical coordinates with time t being the independent variable, the Hamiltonian describing
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Figure 18.1: (a) When j�0=�1j is not too small, the longitudinal phase space shows

2 series of distorted pendulum-like buckets. (b) As j�0=�1j decreases to the critical

value in Eq. (18.23), the 2 series merge. (c) Further reduction of j�0=�1j leads to

new pairing of stable and unstable �xed points and the buckets become �-like. In

each case, the dotted line is the phase axis at zero momentum spread, and the small

circles are the stable �xed points.

the motion of a particle in the longitudinal phase space becomes

H =

�
�0Æ

2

2
+
�1Æ

3

3

�
h!0 +

eVrf!0
2��2E0

�
cos(�s +��) + �� sin�s

�
; (18.22)

where �s is the synchronous phase. With the presence of �1, the symmetry of the higher-

and lower-momentum parts of the phase space is broken. As a result, the phase-space

structure will be very much disturbed. This Hamiltonian gives stable �xed points at

(2n�; 0), (2(n + 1)� � 2�s;��0=�1) and unstable �xed points at (2(n + 1)� � 2�s; 0),

(2n�;��0=�1), where n is any integer. When the contribution of �1 is much smaller

than that of �0, the buckets are still roughly pendulum-like as shown in Fig. 18.1(a) for

the case of �s = 0. Note that there is another series of buckets at momentum spread

��0=�1. As j�0=�1j decreases to a point when the values of the Hamiltonian through all

unstable �xed points are equal, the two series merge as illustrated in Fig. 18.1(b). This
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happens when �����0�1
���� =

�
6eVrf

��2h�0E0

h��
2
� �s

�
sin�s � cos�s

i�1=2

: (18.23)

The right side is just
p
3 times the half bucket height when the �1 term in the Hamiltonian

is absent. As j�0=�1j is further reduced, the pairing of the stable and unstable �xed points
is altered, and the buckets become �-like as illustrated in Fig. 18.1(c). The buckets in

one series have heights given by

Æ̂ =

8>>>><
>>>>:

+

���� �02�1
���� Æ > 0 ;

�
�����0�1

���� Æ < 0 :

(18.24)

For the other series, the buckets are just inverted and are centered at Æ = �j�0=�1j. Note
that the heights of the buckets will vanish if the lattice approaches truly isochronous

(�0 = 0).

Let us now review some very peculiar properties of the �-like bucket.

(1) Since the height of the �-shape bucket is �xed, the bucket width � is propor-

tional to V
�1=2
rf and so is the bucket area A [3]. In fact,

� =

� j�0j3=2
j�1j

��
2��2hE0

3eVrfj cos�sj
�1=2

; (18.25)

A =
6

5

� j�0j5=2
�21

��
2��2hE0

eVrf j cos�sj
�1=2

; (18.26)

where the narrow width of the bucket has been assumed and its maximum momentum

spreads of j�0=(2�1)j and �j�0=�1j have been used. Unlike the usual pendulum-like

bucket where the bucket width is �xed and the bucket height and area increase with the rf

voltage, here, this �-like bucket has �xed height while its width and area will be increased

by lowering the rf voltage. As an example, set the bucket height to j�0=�1j = kÆÆmax

and the bucket half width to ^̀= k``max, where Æmax and `max are the maximum bunch

momentum spread and length in m. The required rf voltage multiplied by the rf harmonic

required to maintain the bunch in the bucket is, according to Eq. (18.25),

hVrf =
2��2E0R

2j�0jk2ÆÆ2max

3ek2` `
2
maxj cos�sj

: (18.27)
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The maximum momentum spread and bunch length are also related by the Hamiltonian,

Vrf
h

=
��2E0j�0jÆ2max

2e sin2 1
2
�max

�
1 +

2

3kÆ

�
; (18.28)

where we have set �s = 0 or �. The maximum half phase spread is �max = h`max=R.

Therefore, when the rf harmonic h� 2R=`max, Eqs. (18.27) and (18.28) give

�
kÆ
k`

�2

= 3 +
2

kÆ
; (18.29)

which is universally true, independent of the bunch and lattice parameters.

(2) The asymmetry between positive and negative momentum spreads brought in

by �1 will lead to bunch length oscillations. Since the energy loss due to the resistive part

of the impedance of the vacuum chamber is proportional to the bunch length, this may

lead to a continuous growth of the synchrotron oscillation amplitude. This instability

is called longitudinal head-tail, which had been observed in the CERN SPS [4]. The

instability can become very strong here because �0 has been made negligibly small.

(3) The synchrotron frequency as a function of oscillation amplitude can be com-

puted easily [3]. As the oscillation amplitude increases, the synchrotron frequency inside

the �-like bucket decreases much more slowly than that inside an ordinary pendulum-like

bucket. However, it drops to zero very abruptly near the edge of the bucket. Thus, the

�-like bucket resembles a resonance island more than the usual pendulum-like bucket.

Because of the sudden drop of the synchrotron frequency near the separatrix, higher-

order resonances due to small jitters or modulations of the rf phase or rf voltage overlap

creating a thick stochastic layer thus further reducing the stable area inside the bucket.

(4) Although there are disadvantages of the �-like bucket, nevertheless, this bucket

is intrinsically narrow in phase spread, as is depicted in Eq. (18.26). For a pendulum-

like bucket, the bucket width is always equal to the rf wavelength, whereas for a �-like

bucket, the bucket width is mostly much less than the rf wavelength. Moreover, for

a bunch in an ordinary pendulum-like bucket, the bunch width varies as (j�0j=Vrf)1=4;
thus reducing the momentum-compaction factor or increasing the rf voltage is not very

eÆcient in reducing the width of the bunch. On the other hand, a bunch in the �-like

bucket has a width proportional to j�j3=2=V 1=2
rf .
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18.3 �2-Dominated Bucket

The �1 term will lead to a small bucket area and possibly longitudinal head-tail in-

stability, thus limiting the beam dynamic when the machine is near isochronous. The

Æ-asymmetric bucket can lead to unpleasant longitudinal head-tail instability. Further-

more, �1 can destroy the isochronicity of the ring. For example, if we want to have a

2 TeV on 2 TeV isochronous ring for the muon collider with j�j <� 1� 10�6, the �1 term

can contribute a a spread of 
�2
t

of � 70� 10�6 at the momentum spread of jÆj < 0:3%

[5]. A large spread in 
�2
t

implies large slippage factors for some particles, so that an un-

usually large rf system will be required for bunching. Therefore, �1 should be eliminated.

Then, the Hamiltonian with the next nonlinear term �2 included becomes

H =

�
�0Æ

2

2
+
�2Æ

4

4

�
h!0 +

eVrf!0
2��2E0

�
cos(�s +��) + �� sin�s

�
: (18.30)

A quadrupole bends particles with positive and negative o�-momenta in opposite direc-

tions. To the lowest order, it contributes to �0 of the momentum-compaction factor. On

the other hand, a sextupole bends particles with positive and negative o�-momenta in

the same direction, and therefore contributes to �1. In fact, through �rst-order pertur-

bation theory, one can show that �2 can be corrected with octupoles, �3 with decapoles,

and so on [6, 7]. Having the ability to change �2 with octupoles may be useful because

it may be easier than adjusting �2 with sextupoles since the latter also a�ect �1.

With the contribution of �1 eliminated, it is possible to adjust �0 to zero so that

the Hamiltonian becomes

H =
1

4
h!0�2Æ

4 +
eVrf!0
2��2E0

�
cos(�s +��) + �� sin�s

�
; (18.31)

Now for �s = 0, the bucket looks pendulum-like with the usual width of �� = 2�. The

bucket half height is Æ̂ = [4eVrf=(��
2E0hj�2j)]1=4. When the half bunch length `max is

short, it is related to the half momentum spread Æmax by

Æ4max =

�
eVrfh

��2E0j�2j
��

`max

R

�2

: (18.32)

If we let Æ̂ = kÆmax, we can solve for the necessary rf voltage and rf harmonic:

Vrf =
��2E0Rk

2��Æ2max

2`max
; h =

2R

`maxk2
; (18.33)
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where �� = j�2jÆ2max is the desired spread of the slippage factor of the bunch. Note that

the rf voltage is proportional to ��, the desired spread in momentum-compaction, and

Æ2max, the momentum spread of the bunch squared. Thus, if we reduce the momentum-

compaction spread, the rf voltage will be reduced by the same factor. On the other

hand, the rf frequency is independent of the choice of �� and Æmax.

For small phase spread, Eq. (18.31) describes a particle oscillating in a quartic

potential (with �� and Æ interchanged). This is a well-known situation when a higher

harmonic cavity is present and the two cavity voltages are inversely proportional to the

square of their respective harmonics (see Sec. 9.3.1). For such a system, the synchrotron

frequency is zero at zero oscillating amplitude and increases linearly with respect to the

momentum o�set Æmax, or the 4th root of the Hamiltonian. The synchrotron frequency

increases to a maximum for larger oscillation amplitude and drops to zero again at

the edge of the bucket. Simple derivation gives the synchrotron tune �s = �s0F (H),

where �s0 =
p
h��eVrf=(2��2E0) with �� = j�2jÆ2max just the synchrotron tune of a

synchronous particle in an ordinary single rf system with a slippage factor equal to ��.

For a constant �2, the �s0 is directly proportional to the momentum-o�set excursion

Æmax. The form factor F (H) can be written as (Exercise 18.5)

F�1(H) =
23=4

2�

Z �=2

0

dz
p
cos z

q
1� sin2 �max

2
sin2 z

: (18.34)

The form factor is evaluated at the Hamiltonian value,

H =
eVrf!0
��2E0

sin2
�max

2
= 1

4
hj�2j!0Æ4max ; (18.35)

where �max and Æmax are equal to, respectively, the phase and momentum-o�set ex-

cursions of the beam particle under investigation. A large spread in synchrotron fre-

quency can be advantageous in providing Landau damping to mode-coupling instabil-

ities. For small �max, from Eqs. (18.33) and (18.35), one obtains sin2(�max=2) = k�4,

where k = Æ̂=Æmax. Thus, the form factor of Eq. (18.34) is almost a constant for any

reasonable k, and is roughly equal to F (H) = 1:45.
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18.4 Microwave Instability Near Transition

18.4.1 Analytic Solutions

In an operation near the transition energy (�0 � 0), at least the next order, �1 in

Eq. (18.16), must be included for a meaningful discussion of the beam dynamics. Bogacz

analyzed the stability of a coasting beam right at transition, �0 = 0 [8], by including

the �1 term but neglecting other higher-order terms. For a Gaussian distribution with

rms energy spread �E, he obtained an analytic expression for the growth rate at the

revolution harmonic n:

1

�n
= �2�1n!0

�
�E
E0

�2

�n with tan�n =

"
ImZ

k
0

Re Zk
0

#
n

; (18.36)

where ImZ
k
0 > 0 implies capacitive and !0=(2�) is the revolution frequency of the

on-energy particle which has energy E0. He drew the conclusion that the beam will

be completely stable. However, when he made this conclusion, he had in mind the

assumption of �1 > 0 and �n > 0, which is not always true. As a result, there will be

microwave growth in general.

Holt and Colestock studied the same problem with coasting beam and Gaussian

energy distribution, but allowing �0 6= 0 [9]. The dispersion relation is expressed in

terms of the complex error function. Their conclusion is that there is no unstable region

in the complex Z
k
0 -plane below transition. On the other hand, there are both stable

and unstable regions above transition. They also claimed that their conclusion was

supported by simulations. However, they did not specify the values of �0 and �1 in

the simulations they presented or in their stability plots in the complex Zk
0 -plane. It is

hard to understand at least the situation below transition. It is clear that when j�0j is
not too small, the contribution of �1 is irrelevant. Thus their claim as stated can be

interpreted as no microwave instability below transition, no matter how far away it is

from transition. For this reason, this claim is quite questionable. When we look into the

stability plots of Holt and Colestock, Fig. 18.2, we can see something that resembles a

stability curve below transition. The presence of a stability curve implies the existence

of both stable and unstable regions, in contradiction to their conclusion.

We performed some simulations and got di�erent results. A coasting beam at

100 GeV was considered in a hypothetical ring of circumference 50 m, with an initial rms
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Figure 18.2: (color) Dispersion relation plots in the complex impedance plane. The

thick blue curves with circles are for real frequencies and therefore should exhibit

the stability boundaries. The red curves with +'s are for complex frequencies. Top

plot is below transition and bottom plot is above transition.
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parabolic fractional momentum spread of 0.001, interacting with a broadband impedance

of Z
k
0=n = 3:00 
 at the resonance frequency of 600 MHz and quality factor Q = 1.

This unrealistic small size of ring was chosen because we wanted to limit the number

of longitudinal bins around the ring so that not so many macro-particles would be

necessary. In the tracking, the bin size had been chosen to be 0.25 m, which was half the

wavelength at 600 MHz. With the slip factor �xed at j�j = 0:005, the beam intensity

was adjusted so that the Keil-Schnell circle-approximated criterion [10] gave a stability

limit of jZk
0=nj = 1:00 
. All higher-order slip factors were set at zero. The tracking

results are shown in Fig. 18.3: the top 4 plots for � = �0:005 (below transition) and

the lower 4 plots for � = +0:005 (above transition) at 0, 1200, 2400, and 3600 turns.

We see that below transition irregularities develop at the low-momentum edge. Ripples

corresponding to the frequency of 600 MHz (wavelength = 0:5 m) are clearly seen.

The momentum spread broadens at the low-momentum side until the total spread is

about 1100 MeV, about 2.75 times the original total spread of about 400 MeV. This is

partly because of the energy loss as a result of the resistive part of the impedance. The

observation de�nitely con�rms the occurrence of microwave instability below transition,

and the eventual self-stabilization by overshooting. Above transition, irregularities also

develop at the low-momentum edge and the momentum spread also broadens at the

low-momentum edge. The total spread appears to be broader than the situation below

transition. In addition, we see small bomb-like droplets launched at the low-momentum

side, which are not observed below transition. Instability above transition appears to

be more severe than below transition. We will come back to the simulations of coasting

beam near transition later in Sec. 18.4.3.

18.4.2 Bunched Beam Simulations

In this section, we study the stability of a bunched beam very close to transition. As

an example, take a muon bunch in the proposed 50� 50 GeV muon collider, which has

a slip factor of j�j = 1� 10�6. Everything we discuss here will apply to a proton bunch

also, with the exception that the muons decay while the protons are stable. We will �rst

discuss the situation with the decay of the muons taken into consideration, and later

push the lifetime to in�nity. We assume that sextupoles and octupoles are installed and

adjusted so that the contributions of �1 and �2 become insigni�cant compared with �0.

The muon bunch we consider has an intensity of Nb = 4 � 1012 particles, rms width

�` = 13 cm and rms fractional momentum spread �Æ = 3 � 10�5 or �E = 1:5 MeV.
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Figure 18.3: The top 4 plots and lower 4 plots are for � = �0:005 (below transition)

and � = +0:005 (above transition), respectively, at 0, 12000, 24000, and 36000 turns.

The impedance is a broadband with Q = 1, Z
k
0=n = 3:0 
 at the resonant frequency

of 600 MHz.
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The impedance is assumed to be broadband with Z
k
0=n = 0:5 
 at the angular resonant

frequency of !r = 50 GHz with quality factor Q = 1. The muons have an e-folding

lifetime of 891 turns at 50 GeV in this collider ring. During the muon lifetime, there is

negligible phase motion. Thus a bunching rf frequency system is not necessary. However,

as will be explained below, rf systems are needed for the cancellation of potential-well

distortion.

For bunched beams, there is the issue of potential-well distortion which must not be

mixed up with the collective microwave instability. Potential-well distortion will change

the shape of the bunch to something that looks like the plot of Fig. 18.4, with the

di�erence that the distortion of the beam does not come from the space charge force,

but mainly from the inductive part of the broadband impedance.

The wake potential seen by a particle inside a Gaussian bunch at a distance z behind

the bunch center is shown in Fig. 18.5 and is given by

V (z)=e

Z z

�1

dz0�(z0)W0(z � z0)=� eN!rRk

2Q cos�0
Re ei�0�z2=(2�2

`
)w

�
�`!re

i�0

c
p
2

� izp
2�`

�
;

(18.37)

where �(z) is the bunch distribution, W0(z) the longitudinal wake function, sin�0 =

1=(2Q), and w is the complex error function. This distortion can be cancelled up to

�3�` by 2 rf systems [11], which at injection are at frequencies !1=(2�) = 0:3854 GHz

and !2=(2�) = 0:7966 GHz, with voltages V1 = 65:40 kV and V2 = 24:74 kV, and phases

'1 = 177:20Æ and '2 = 174:28Æ. This compensation is shown in Fig. 18.5. Since only 2

sinusoidal rf's are used, the cancellation is not complete; however, the error is less than

1% of the original wake potential and is considered to be not important. Because of the

lifetime of the muons, we �rst performed tracking for only 1000 turns in the time domain

using the broadband wake function W0(z). The initial and �nal bunch distributions are

shown in Fig. 18.6. During the simulation the compensating rf voltages were lowered

turn by turn to conform with the diminishing bunch intensity due to the decay of the

muons.

We see from the right plot of Fig. 18.6 that the bunch distribution has been very

much distorted after 1000 turns. This comes mostly from the fact that the original

distribution of the bunch in the left plot is not exactly Gaussian. It consists of 2� 106

macro-particles randomly distributed according to a bi-Gaussian distribution. As a re-

sult, the wake potential of the actual bunch shown as a red dotted curve in Fig. 18.7

deviates slightly from and wiggles around the ideal wake potential curve of a smooth
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b)

 -40                         0                          40
Figure 18.4: E�ects of a strong space charge or potential-well distortion force result
in a N -shape vertical shear on the bunch.

Figure 18.5: (color) Wake potential, compensating rf voltages, and net voltage seen

by particles in the 13-cm bunch at injection. The compensating rf is the sum of two

rf's represented by dashes.
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Figure 18.6: Simulation of the 13-cm bunch of 4� 1012 muons subject to a broad-

band impedance with quality factor Q=1 and Zk=n=0:5 
 at the resonant angular

frequency !r=50 GHz. The half-triangular bin width is 15 ps (0.45 cm) and 2�106

macro-particles are used. Left plot shows initial distribution with �E=1:5 MeV and

�`=13 cm. Right plot shows distribution after 1000 turns with compensating rf's

depicted in Fig. 18.5.

Gaussian bunch shown in solid. The di�erence is the magenta dotted jitter curve in the

center of the plot. The 
uctuation seen in the right plot of Fig. 18.6 is the result of

the accumulation of this dotted jitter curve in 1000 turns with muon decay taken into

account. Although this tiny 
uctuation leads to a small potential-well distortion in one

turn (� 0:02 MeV), it is unfortunate that this distortion accumulates turn after turn

and will never reach a steady state, since the beam is so close to transitiony. (For an

electron bunch, this growth will stop when it is balanced by radiation damping.) This

accumulated distortion can be computed exactly from the the dotted jitter curve. Any

growth in excess will come from collective microwave instability. Note that the uncom-

pensated potential-well distortion is quite di�erent from the growth due to microwave

instability. For the former, the growth in energy 
uctuations every turn will be exactly

yMore exactly, a steady state will be reached when the momentum o�set becomes so large that phase

drift due to the small slip factor becomes signi�cant. However, this will not happen in reality because

of the �nite momentum aperture of the storage ring.
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Figure 18.7: (color) Wake potential seen by the simulated bunch shown as red dots

is interlaced with the wake potential of an ideal smooth Gaussian bunch shown in

solid. The di�erence (center magenta curve) represents the random 
uctuation of

the �nite number of macro-particles.

by the same amount as given by the dotted jitter curve in Fig. 18.7 (if muon decay is

neglected). This is because the wake potential of particles along the bunch does not

depend on the energy distribution of the bunch, but only on its linear density and the

latter is essentially unchanged since the particles do not drift much during the �rst 1000

turns. On the other hand, the initial growth due to microwave instability at a particular

turn is proportional to the actual energy 
uctuation at that turn and the evolution of

the growth is exponential. Thus, although the growth due to microwave instability is

small at the beginning, it will be much faster later on when the accumulated energy


uctuations become larger. It is worth mentioning that even if the wake potential of

the initial bunch with statistical 
uctuations has been compensated exactly by the rf's,

the bunch can still be unstable against microwave instability. An in�nitesimal deviation

from the bunch distribution can excite the collective modes of instability corresponding

to some eigenfrequencies. In other words, the accumulated growth due to potential-

well distortion is a static solution and this static solution converges very slowly close to
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transition until the momentum spread is large enough for the small j�j to smooth the

distribution. Microwave instability, on the other hand, is a time dependent solution.

In Fig. 18.8, the 3 plots on the left are for a 4000-turn simulation of the same muon

bunch using 2 � 106 macro-particles with the decay of the muons considered. The two

compensating rf systems are turned on. The �rst plot is for � = 0 so that microwave

instability cannot develop. All the 
uctuations are due to the residual potential-well

distortion or the accumulation of the uncompensated jitters. The second and third

plots are for, respectively, � = �1� 10�6 (below transition) and � = +1� 10�6 (above

transition). We see that they deviate from the �rst plot, showing that there are growths

due to microwave instability although the e�ect is small. The 3 plots on the right are

the same as on the left with the exception that the muons are considered stable, or,

in other words, the particles can be protons. We see that the second and third plots

di�er from the �rst one by very much (note the change in energy scale), indicating

that microwave instability does play an important role for proton bunches in a quasi-

isochronous ring. We also see that microwave instability is more severe above transition

than below transition even when the beam is so close to transition. In the simulations,

the jitters, or the statistical 
uctuation around the smooth distribution might have

been very much exaggerated because of the small number of macro-particles included

in the tracking. In a realistic beam, these statistical 
uctuations should be very much

smaller. However, these jitters can also come from other sources, such as electronic

noises, rf acceleration, rf maneuvering, etc. These jitters will be very much larger than

the Schottky noise. As a result, in the design of a quasi-isochronous ring, the sources of

all jitters should be carefully considered in order to estimate the growth in energy o�set

due to potential-well distortion or microwave instability.

18.4.3 Coasting Beam Simulations

For coasting beams, we do not have the inverted tilted \N"-shape wake potential as in

Fig. 18.5. Thus, no rf compensation will be required. However, the noise in the beam

does result in a wake potential similar to the small residual wake-potential jitters in

Fig. 18.5 after wake-potential compensation. Near transition where the phase motion

is negligibly slow, these jitters will add up turn after turn without limit exactly in the

same way as the bunched beam after having optimized the rf compensation. Thus, near

transition, there is essentially no di�erence between a coasting beam and a bunched beam

after the rf compensation. The only exception is that microwave instability develops
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Figure 18.8: Phase-space plots of energy spread in MeV versus distance from bunch

center in cm at the end of 4000 turns. All are simulating 4�1012 micro-particles with

2�106 macro-particles. In the left 3 plots, the decay of the muons has been taken into

account. The �rst left plot is for � = 0 so that it just gives the amount of potential-

well distortion. The second and third plots are for, respectively, � = �1 � 10�6

and +1 � 10�6. The small deviations from the �rst plot are results of microwave

instability. The right 3 plots are the same as the left, except that the muons are

considered stable. Here, large microwave growths develop (note the change of energy

scale).
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most rapidly near the center of the bunch where the local intensity is highest, whereas

in a coasting beam, microwave instability develops with equal probability along the

bunch depending on the statistical 
uctuations in the macro-particles.

In Fig. 18.9, we show some coasting beam simulations near transition by having

�0 = 0 or �5 � 10�5 and �1 = 0 or �0:05. The coasting beam consists of 3:27 � 1015

protons (or nondecaying muons) having an average energy of 100 GeV in a hypothetic

ring with circumference 50 m. The initial momentum spread is Gaussian with rms

fractional spread �Æ = 0:001 or �E = 100 MeV. Thus, at 1�, the contribution of j�1j =
0:05 is the same as the contribution of j�0j = 5� 10�5. The simulations are performed

with 8�105 macro-particles in 400 triangular bins. The impedance is a broadband with

Q = 1 and Z
k
0=n = 2 
 at the resonant frequency of fr = 300 MHz.

All the plots in Fig 18.9 are illustrated with the same scale for easy comparison.

The horizontal axes are longitudinal beam position from 0 to 166.7 ns, while the vertical

axes are energy spread from �4000 to 3000 MeV. Plot (a) shows the initial particle

distribution in the longitudinal phase space. All the other plots are simulation results at

the end of 54,000 turns. Plot (b) is the result of having �0 = 0 and �1 = 0. It shows the

accumulation of the wake-potential jitters over 54,000 turns. These jitters originate from

the statistical 
uctuation of the initial population of the macro-particles. Therefore, any

deviation from Plot (b) implies microwave instability. Plots (c) and (d) are with �0 = 0,

but with �1 = +0:05 and �0:05, respectively. We see the growths curl towards opposite

phase directions nonlinearly as expected. This is due to the nonlinearity in Æ of the

time slip given by Eq. (18.16), similar to the simulations in Fig. 18.4(a). It appears

that Plot (c) with �1 = �0:05 gives a larger growth. Plots (e), (g), and (i) are for

�0 = �5� 10�5 (below transition), but with �1 = +0:05, �0:05, and 0, respectively. We

see that the microwave instability is most severe when �1 = 0, indicating that �1 has the

ability to curb instability. This is, in fact, easy to understand. The phase drift driven

by j�1j = 0:05 is much faster than that driven by j�0j = 5:0� 10�5 at larger momentum

spread; for example, it will be 4 times faster at 2�Æ, 9 times faster at 3�Æ, etc. As a

result, a nonvanishing j�1j tends to move particles away from the clumps, thus lessening

the growth due to microwave instability.

Plots (f), (h), and (j) are for �0 = +5�10�5 (above transition), but with �1 = +0:05,

�0:05, and 0, respectively. Again microwave instability is most severe when �1 = 0, and

�1 does curb instability to a certain extent. Comparing Plots (e), (g), and (i) with

Plots (f), (h), and (j), it is evident that the beam is more unstable against microwave
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Figure 18.9: Energy spread (MeV) versus bunch position (ns) of coasting beam

simulations. See text for explanation.
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instability above transition (�0 > 0) than below transition (�0 < 0) independent of the

sign of �1. For a �xed �0, we also notice that negative �1 is more unstable than positive

�1. The theoretical implications of these results are nontrivial and will be discussed in

a future publication.

Now let us come back to the analytic investigations by Bogacz, Holt, and Colestock.

Their results appear to contradict the simulations presented here. Analytic analysis often

starts with the Vlasov equation. The time-dependent beam distribution  (�;�E; t) can

be separated into two parts:

 (�;�E; t) =  0(�;�E) +  1(�;�E) e
�i
t : (18.38)

Here,  0 is the steady-state solution of the Hamiltonian and  1 describes the collective

motion of the beam with the collective frequency 
=(2�). After linearization, the Vlasov

equation becomes an eigenequation with  1 as the eigenfunction and 
=(2�) the eigen-

frequency. The equation also depends on  0. Thus we must solve for the steady-state

solution �rst before solving the eigenequation. The steady-state solution is the time-

independent solution of the Hamiltonian which includes the contribution of the wake

function. In other words,  0 is the potential-well-distorted solution. Far away from

transition, this distortion is mostly in the � coordinate, for example, that brought about

by the space charge or inductive forces. Therefore, for a coasting beam, there will not

be any potential-well distortion at all. The situation, however, is quite di�erent close to

transition. As was pointed out in above, the potential-well distortion is now in the �E

coordinate. For this reason, not only bunched beams, even coasting beams will su�er

from potential-well distortion as a result of the nonuniformity of the beam. In simula-

tions, the nonuniformity arrives from the statistical 
uctuation of the distribution of the

macro-particles. This nonuniformity will accumulate turn by turn until the momentum

spread is so large that the small j�j is able to smooth out all nonuniformity. In other

words, the steady-state distribution  0 that goes into the Vlasov equation will be com-

pletely di�erent from the original distribution in the absence of the wake. In the analysis

of Bogacz, Holt, and Colestock, the ideal smooth Gaussian distribution in energy was

substituted for  0 in the Vlasov equation. However, this is a very unstable static dis-

tribution; even a small perturbation will accumulate turn by turn with extremely slow

convergence. For this reason, it is hard to understand what their results really represent.
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18.5 Exercises

18.1. (1) Derive Eqs. (18.14) and (18.15), the expansions of the revolution period T and

velocity � as powers of the momentum o�set Æ.

(2) Derive Eq. (18.20), the expansion of the slippage factor.

18.2. Figure 18.1 indicates that there are two series of pendulum-like longitudinal buck-

ets unless it is very close to the transition energy. Explain why we see only one

series under most condition. Use the Fermilab Main Injector as an example. The

Main Injector has a 
t = 21:8 (20.45 GeV) and �1 = 0:50. Compute the distance

between the two series of buckets in fractional momentum spread when it is in a

coasting mode at the injection energy of 8 GeV and at 18.5 GeV.

18.3. For a proton storage ring with 
t = 21:8 and �1 = 0:50. The rf voltage is 2.5 MV

and the synchrotron phase is 0Æ. Compute the energy at which the two series of

longitudinal buckets merge.

18.4. Keeping up to �1, for the �-like bucket,

(1) derive the relation between width and height of the bucket [Eq. (18.25)],

(2) derive the bucket area [Eq. (18.27)],

(3) derive Eq. (18.29), the universal relation between width and height of a bunch

�t to the bucket.

18.5. Derive the synchrotron tune of a �2-dominated bucket starting from the Hamilto-

nian of Eq. (18.31).

Answer: �s = �s0F , where F is given by Eq. (18.34)
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